ヒッツェル,エクハルト
HITZER, Eckhard
ヒッツェル, エクハルト 所属 国際基督教大学教養学部 アーツ・サイエンス学科 職種 上級准教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2009 |
形態種別 | 研究論文(国際会議プロシーディングス) |
査読 | 査読あり |
標題 | Clifford (Geometric) Algebra Wavelet Transform |
執筆形態 | 単著 |
掲載誌名 | Proc. of GraVisMa 2009, 02-04 Sep. 2009, Plzen, Czech Republic |
掲載区分 | 国外 |
巻・号・頁 | pp.94-101 |
著者・共著者 | HITZER Eckhard |
概要 | While the Clifford (geometric) algebra Fourier Transform (CFT) is global, we introduce here the local Clifford (geometric) algebra (GA) wavelet concept. We show how for n = 2,3(mod 4) continuous Cl_n-valued admissible wavelets can be constructed using the similitude group SIM(n). We strictly aim for real geometric interpretation, and replace the imaginary unit i element of C (complex numbers) therefore with a GA blade squaring to -1. Consequences due to non-commutativity arise. We express the admissibility condition in terms of a Cl_n CFT and then derive a set of important properties such as dilation, translation and rotation covariance, a reproducing kernel, and show how to invert the CliRord wavelet transform. As an explicit example, we introduce Clifford Gabor wavelets. We further invent a generalized Clifford wavelet uncertainty principle. Extensions of CFTs and Clifford wavelets to Cl(0,n') ; n' = 1,2(mod 4) appear straight forward. |