ヒッツェル,エクハルト
HITZER, Eckhard
ヒッツェル, エクハルト 所属 国際基督教大学教養学部 アーツ・サイエンス学科 職種 上級准教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2013 |
形態種別 | 研究論文(国際会議プロシーディングス) |
査読 | 査読あり |
標題 | Square roots of -1 in real Clifford algebras |
執筆形態 | 共著 |
掲載誌名 | Trends in Mathematics, Vol 27, Birkhauser, Basel, 2013. |
巻・号・頁 | pp.123-153 |
著者・共著者 | HITZER Eckhard, J. Helmstetter, R. Ablamowicz |
概要 | Let Cl(p,q) be the universal Clifford algebra (associative with unit) generated over R by p + q elements e_k (with k = 1, 2, ... , p + q) with the relations e^2_k = 1 if k <= p, e^2_k = -1 if k > p and e_he_k + e_ke_h = 0 whenever h not equal k, see [6]. We set n = p + q and s = p - q. This algebra has dimension 2^n, and its even subalgebra Cl_0(p,q) has dimension 2^{n-1} (if n > 0). We are concerned with square roots of -1 contained in Cl(p,q) or Cl_0(p,q). If the dimension of Cl(p,q) or C_0(p,q) is less or equal 2, it is isomorphic to R or R^2 or C, and it is clear that there is no square root of -1 in R and R2 = R x R, and that there are two squares roots i and -i in C. Therefore we only consider algebras of dimension greater or equal 4. Square roots of -1 have been computed in [4] for algebras of dimension less or equal 16, and for Cl(3,0) in [7]. |
DOI | 10.1007/978-3-0348-0603-9_7 |